This experimental study deals with the effect of machine structural loop stiffness on grinding of ceramics. The objective of the study is to investigate how the loop stiffness affects grinding forces, wheel actual depth of cut (ADOC) and workpiece strength. A compliant workholder is specifically designed and attached to a precision grinder to simulate grinding machines of various compliances so that the effect of machine loop stiffness can be isolated under otherwise identical conditions. Silicon nitride is used as workpiece material and ground with diamond wheels of two bond types and three grit sizes at machine loop stiffness of four different levels. The ground workpieces are assessed in terms of residual workpiece strength, grinding damage, grinding forces, and ADOC. Theoretical analyses are given to indicate that machine loop stiffness can affect on normal grinding forces and workpiece strength. A discussion is provided to reveal how residual workpiece strength is affected by residual stress and grinding-induced damage.