แปลบทความวิจัยTools of a data scientistUnlike your typical programmer, การแปล - แปลบทความวิจัยTools of a data scientistUnlike your typical programmer, อังกฤษ วิธีการพูด

แปลบทความวิจัยTools of a data scien

แปลบทความวิจัยTools of a data scientist
Unlike your typical programmer, who may use a standardised set of tools, data scientists tend to use a wide array of ever changing tools. This is because the data science landscape is evolving rapidly, with many new tools still far from maturity. That being said, below we’ve compiled a series of popular tools for data scientists aligned to specific practices:
Data Analysis:
Here, the tools are really just the programming languages a data scientist uses to extract and analyse data. This is typically Python, R and SQL.
Data Warehousing:
A data scientist may choose to have their own database to which they can extract and analyse data. MySQL is among the most popular to handle reasonable size datasets. Moving in to the realms of big data, they would typically turn to programs like Hive or Redshift. You’d also be surprised how far most data scientists can go utilising the average .CSV file before it falls over.
Data Visualisation:
Among the most commonly mentioned tools for data visualisation are D3.js and Tableau. For D3.js, if you can imagine a data visualisation, a data scientist can achieve it using the software. Tableau is the most popular data visualisation tool out there at the moment allowing the compiling data from hundreds of inputs and then easily transforming the data into visualisations.
Machine Learning:
This is perhaps the area most in flux with new tools emerging daily. Most established and widely used is perhaps Scikit-learn which utilises Python for machine learning. Then of course there is Spark MLlib which is Apache’s own machine learning library for Spark and Hadoop.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Tools of a research article translation data scientistUnlike your typical programmer, who may use a standardised set of tools, data scientists tend to use a wide array of ever changing tools. This is because the data science landscape is evolving rapidly, with many new tools still far from maturity. That being said, below we've compiled a series of popular tools for data scientists aligned to specific practices:Data Analysis:Here, the tools are really just the programming languages a data scientist uses to extract and analyse data. This is typically Python, R and SQL.Data Warehousing:A data scientist may choose to have their own database to which they can extract and analyse data. MySQL is among the most popular to handle reasonable size datasets. Moving in to the realms of big data, they would typically turn to programs like Hive or Redshift. You'd also be surprised how far most data scientists can go utilising the average .CSV file before it falls over.Data Visualisation:Among the most commonly mentioned tools for data visualisation are D3.js and Tableau. For D3.js, if you can imagine a data visualisation, a data scientist can achieve it using the software. Tableau is the most popular data visualisation tool out there at the moment allowing the compiling data from hundreds of inputs and then easily transforming the data into visualisations.Machine Learning:This is perhaps the area most in flux with new tools emerging daily. Most established and widely used is perhaps Scikit-learn which utilises Python for machine learning. Then of course there is Spark MLlib which is Apache's own machine learning library for Spark and Hadoop.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
Microsoft Research Tools of a Data scientist
Unlike your Typical Programmer, Who May use a standardized SET of Tools, Data scientists tend to use a Wide array of Ever changing Tools. This is because the Data Science Landscape is evolving rapidly, with MANY New Tools. Far from still Maturity. That being said, we've compiled a Series of popular Below Tools for Data scientists Aligned to specific Practices:
Data Analysis:
Here, the Tools Really just the programming Languages ​​are a scientist uses to Extract Data and Data analyze. this is typically Python, R and SQL.
Data Warehousing:
A Data scientist May choose to have their own Database to which they Can Extract and analyze Data. MySQL is among the Most popular to Handle reasonable Size datasets. Moving in to the realms of Big. Data, they would typically turn to programs like Hive or Redshift. You'd also be surprised How Far Can Go Most Data scientists utilizing the average .CSV file before it over Falls.
Data Visualisation:
Among the Most Tools for Data visualization are commonly mentioned. D3.js and Tableau. For D3.js, if you can imagine a data visualisation, a data scientist can achieve it using the software. Tableau is the most popular data visualisation tool out there at the moment allowing the compiling data from hundreds of inputs. and then easily transforming the Data Into visualisations.
Machine Learning:
This is perhaps the Area Most in flux with New Tools emerging Daily. Most established and widely used is perhaps Scikit-Learn which utilizes Python for Machine Learning. then of course there is Spark MLlib. which is Apache's own machine learning library for Spark and Hadoop.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Translation research articles Tools of a data scientist.Unlike your typical programmer who may, use a standardised set, of tools data scientists tend to use a wide array of ever. Changing tools. This is because the data science landscape is evolving rapidly with many, new tools still far from, maturity. That being said below we ", ve compiled a series of popular tools for data scientists aligned to specific practices:Data Analysis:Here the tools, are really just the programming languages a data scientist uses to extract and analyse data. This is typically. Python R and, SQL.Data Warehousing:A data scientist may choose to have their own database to which they can extract and analyse data. MySQL is among the most. Popular to handle reasonable size datasets. Moving in to the realms of big data they would, typically turn to programs like. Hive or Redshift. You "d also be surprised how far most data scientists can go utilising the average. CSV file before it. Falls over.Data Visualisation:Among the most commonly mentioned tools for data visualisation are D3.js and Tableau. For D3.js if you, can imagine a data. Visualisation a data, scientist can achieve it using the software. Tableau is the most popular data visualisation tool out. There at the moment allowing the compiling data from hundreds of inputs and then easily transforming the data into visualisations.Machine Learning:This is perhaps the area most in flux with new tools emerging daily. Most established and widely used is perhaps Scikit-learn. Which utilises Python for machine learning. Then of course there is Spark MLlib which is Apache "s own machine learning library. For Spark and Hadoop.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: