Introduction: It is a common finding that despite high levels of speci การแปล - Introduction: It is a common finding that despite high levels of speci อังกฤษ วิธีการพูด

Introduction: It is a common findin

Introduction: It is a common finding that despite high levels of specificity and sensitivity, many medical tests are not highly effective in diagnosing diseases exhibiting a low prevalence within a clinical population. What is not widely known or appreciated is how the results of retesting a patient using the same or a different medical or psychological test impacts the estimated probability that a patient has a particular disease. In the absence of a ‘gold standard’ special techniques are required to understand the error structure of a medical test. Generalizability can provide guidance as to whether a serial Bayes model accurately updates the positive predictive value of multiple test results. Methods: In or-der to understand how sources of error impact a test’s outcome, test results should be sampled across the testing condi-tions that may contribute to error. A generalizability analysis of appropriately sampled test results should allow re-searchers to estimate the influence of each error source as a variance component. These results can then be used to determine whether, or under what conditions, the assumption of test independence can be approximately satisfied, and whether Bayes theorem accurately updates probabilities upon retesting. Results: Four hypothetical generalizability study outcomes are displayed as variance component patterns. Each pattern has a different practical implication re-lated to achieving independence between test results and deriving an enhanced PPV through retesting an individual patient. Discussion: The techniques demonstrated in this article can play an important role in achieving an enhanced positive predictive value in medical and psychological diagnostic testing and can help ensure greater confidence in a wide range of testing contexts.
Keywords: Generalizability Theory, Bayes, Serial Bayes Estimation, Positive Predictive Value, Psychological Testing, Serial Medical Testing
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Introduction: It is a common finding that despite high levels of specificity and sensitivity, many medical tests are not highly effective in diagnosing diseases exhibiting a low prevalence within a clinical population. What is not widely known or appreciated is how the results of retesting a patient using the same or a different medical or psychological test impacts the estimated probability that a patient has a particular disease. In the absence of a 'gold standard' special techniques are required to understand the error structure of a medical test. Generalizability can provide guidance as to whether a serial Bayes model accurately updates the positive predictive value of multiple test results. Methods: In or-der to understand how sources of error impact a test's outcome, test results should be sampled across the testing condi-tions that may contribute to error. A generalizability analysis of appropriately sampled test results should allow re-searchers to estimate the influence of each error source as a variance component. These results can then be used to determine whether, or under what conditions, the assumption of test independence can be approximately satisfied, and whether Bayes theorem accurately updates probabilities upon retesting. Results: Four hypothetical generalizability study outcomes are displayed as variance component patterns. Each pattern has a different practical implication re-lated to achieving independence between test results and deriving an enhanced PPV through retesting an individual patient. Discussion: The techniques demonstrated in this article can play an important role in achieving an enhanced positive predictive value in medical and psychological diagnostic testing and can help ensure greater confidence in a wide range of testing contexts.Keywords: Generalizability Theory, Bayes, Serial Bayes Estimation, Positive Predictive Value, Psychological Testing, Serial Medical Testing
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
Introduction: It is a common finding that despite high levels of specificity and sensitivity, many medical tests are not highly effective in diagnosing diseases exhibiting a low prevalence within a clinical population. What is not widely known or appreciated is how the results of retesting a patient using the same or a different medical or psychological test impacts the estimated probability that a patient has a particular disease. In the absence of a 'gold standard' special techniques are required to understand the error structure of a medical test. Generalizability can provide guidance as to whether a serial Bayes model accurately updates the positive predictive value of multiple test results. Methods: In or-der to understand how sources of error impact a test's outcome, test results should be sampled across the testing condi-tions that may contribute to error. A generalizability analysis of appropriately sampled test results should allow re-searchers to estimate the influence of each error source as a variance component. These results can then be used to determine whether, or under what conditions, the assumption of test independence can be approximately satisfied, and whether Bayes theorem accurately updates probabilities upon retesting. Results: Four hypothetical generalizability study outcomes are displayed as variance component patterns. Each pattern has a different practical implication re-lated to achieving independence between test results and deriving an enhanced PPV through retesting an individual patient. Discussion: The Techniques demonstrated in this Article Can Play an important role in achieving an Enhanced positive predictive value in Medical and Psychological Diagnostic Testing and Can Help Ensure greater confidence in a Wide Range of Testing contexts.
Keywords: generalizability Theory, Bayes, Serial Bayes Estimation. , Positive Predictive Value, Psychological Testing, Serial Medical Testing.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Introduction: It is a common finding that despite high levels of specificity and sensitivity many medical, tests are not. Highly effective in diagnosing diseases exhibiting a low prevalence within a clinical population.What is not widely known or appreciated is how the results of retesting a patient using the same or a different medical. Or psychological test impacts the estimated probability that a patient has a particular disease. In the absence of a gold. ' Standard 'special techniques are required to understand the error structure of a medical test.Generalizability can provide guidance as to whether a serial Bayes model accurately updates the positive predictive value. Of multiple test results. Methods: In or-der to understand how sources of error impact a test ', s outcome test results should. Be sampled across the testing condi-tions that may contribute to error.A generalizability analysis of appropriately sampled test results should allow re-searchers to estimate the influence. Of each error source as a variance component. These results can then be used to determine whether or under what conditions,,, The assumption of test independence can be approximately satisfied and whether, Bayes theorem accurately updates probabilities. Upon retesting. Results:Four hypothetical generalizability study outcomes are displayed as variance component patterns. Each pattern has a different. Practical implication re-lated to achieving independence between test results and deriving an enhanced PPV through retesting. An individual patient. Discussion:The techniques demonstrated in this article can play an important role in achieving an enhanced positive predictive value. In medical and psychological diagnostic testing and can help ensure greater confidence in a wide range of testing, contexts.
Keywords: Generalizability Theory Bayes Serial Bayes Estimation,,,,, Positive Predictive Value Psychological Testing Serial. Medical Testing
.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2026 I Love Translation. All reserved.

E-mail: