Starch is a biomaterial which found multiple applications in various branches. It is polysaccharide containing two types of polymers coexisting naturally: amylose and amylopectin, standing for linear and branched polymer form respectively. Both polymers are build using D-glucose monomers connected with α(1–4) glycosidic bond forming linear polymeric core of amylose and α(1–6) glycosidic bond introducing branching to amylopectin polymeric core [1].
Novel approach in polymer manufacture implies usage of composites e.g. polypropylene carbonate (PPC) are being doped with starch in order to create biofriendly, naturally degrading material, diminishing negative effect of polymeric waste production [2], [3] and [4]. Starch is also showing very interesting optical properties. For example second harmonic light generation can be obtained on starch granules [5], [6] and [7]. There have been designated χ(2) tensor for starch granules confirming cylindrical symmetry of amylopectin [5] and [8]. Refractive index has been measured as n = 1.515 (λ = 632.8 nm) for starch acetate and for pure starch n = 1.520 [9] and [10]. As a material, starch can be fabricated having form of anisotropic transparent gels [11], but also it is possible to fabricate starch based nanostructures, as granules. It has been confirmed, that starch assist in formation of nanoparticles e.g. during gel assisted laser ablation, forming Ag nanoparticles [12], [13] and [14]. All observed properties of this biomaterial allows it to be used in wide range of branches starting from food production through material engineering and optics, ending on nanoparticles fabrication as a crucial part of novel drug delivery systems [15].
It was previously confirmed that random lasing could be observed in systems based on biological matter like dye-doped biopolymeric matrices containing deoxyribonucleic acid (DNA) strands [16]. Moreover due to the low oxygen permeability properties we can expect improvement of photostability of starch based systems with respect to DNA based materials [17] and [18]. Such a design opens new possibilities in development of photonic materials based on biological matter. Costs and availability of matrices prepared from starch are encouraging and can be reduced to costs of fluorescent dyes used as dopants in biomaterials.
ผลลัพธ์ (
แอฟริกา) 1:
[สำเนา]คัดลอก!
Stysel is 'n biomateriaal wat verskeie programme in verskeie takke gevind. Dit is polisakkaried wat twee tipes polimere natuurlik naasbestaande: amilose en amilopektien, staan vir lineêre en vertakte onderskeidelik polimeer vorm. Polimere is beide die gebruik van D-glukose monomere Bou Gekoppel met alfa (4/1) hoofgroef vorming lineêre polimeriese kern van amilose en alfa (6/1) hoofgroef bekendstelling aan amilopektien vertakking polimeriese kern [1]. Novel benadering impliseer Vervaardiging in polimeer. gebruik van samestellings bv polipropileen karbonaat (PPC) word gedoteer met stysel om biofriendly natuurlik vernederende materiaal te skep, dalende negatiewe effek van polimeriese afval produksie [2] [3] en [4]. Stysel word ook vertoon baie interessante optiese eienskappe. Byvoorbeeld tweede harmoniese lig geslag kan verkry word op styselkorrels [5], [6] en [7]. Daar is aangewys χ (2) tensor vir styselkorrels bevestig silindriese simmetrie van amilopektien [5] en [8]. Brekingsindeks is gemeet as n = 1,515 (λ = 632,8 nm) vir stysel asetaat en vir pure stysel N = 1,520 [9] en [10]. As 'n materiaal kan stysel vervaardigde met vorm van anisotrope deursigtige gels [11], maar ook dit is moontlik om stysel nanostrukture fabriseer, soos korrels. Dit is bevestig dat stysel te help in die vorming van nanopartikels bv tydens gel bygestaan laserablasie, die vorming Ag nanopartikels [12], [13] en [14]. Alle waargeneem eienskappe van hierdie biomateriaal dit toelaat om gebruik te word in 'n groot verskeidenheid van Takke Vanaf Voedselproduksie Deur Materiaal Ingenieurswese en Optics eindig op nanopartikels Fabrication As 'n belangrike deel van nuwe Drug Delivery Systems [15]. Dit was voorheen bevestig dat Random lasing. kan waargeneem word in stelsels wat gebaseer is op biologiese materiaal soos kleurstof gedoopte biopolymeric matrikse bevat deoksiribonukleïensuur (DNA) stringe [16]. Verder as gevolg van die lae suurstof deurlaatbaarheid eienskappe wat ons kan verbeter photostability van stysel-gebaseerde stelsels verwag met betrekking tot DNA-gebaseerde materiale [17] en [18]. So 'n ontwerp open nuwe moontlikhede in die ontwikkeling van fotonische materiale gebaseer op biologiese materiaal. Koste en beskikbaarheid van matrikse bereid om van stysel is bemoedigend en kan verminder word om die koste van fluorescent kleurstowwe gebruik as dopants in biomateriale.
การแปล กรุณารอสักครู่..
