Figure 2: Comparison GraphAfter applying genetic operators’ crossover, การแปล - Figure 2: Comparison GraphAfter applying genetic operators’ crossover, อังกฤษ วิธีการพูด

Figure 2: Comparison GraphAfter app

Figure 2: Comparison Graph
After applying genetic operators’ crossover, fitness function and inversion we get final population. Out of the above final population we get minimum waiting for job sequence 1, 3, 4, 2 as 3.25 time unit. Following graph focus on comparison based on average waiting time of algorithms. A time unit on Z-axis and on Y-axis FCFS, SJF, RR and GA algorithms has been presented (Figure 2).
VII. CONCLUSION AND FUTURE SCOPE
The problem of scheduling which computer process run at what time on the central processing unit (CPU) or the processor is explored. Some CPU scheduling algorithms has been briefed. The simplicity of the methods used supports the assumption that GA's can provide a highly flexible and user friendly, near optimal solution to the general job sequencing problem. The Genetic algorithms outperform the conventional procedures in solving optimization problems. The new representation has initially been tested on a data to evaluate its effectiveness. Quite promising results are obtained. The simulation results clearly show that the proposed approach is able to find optimized solution. The experiment carried out is efficient to find best sequence. From result we even conclude that with evolutionary technique we may get more than one best sequence with minimum waiting time. This work can be extended so that technique can be implemented for dynamic scheduling and for similar sequencing problem.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Figure 2: Comparison GraphAfter applying genetic operators' crossover, fitness function and inversion we get final population. Out of the above final population we get minimum waiting for job sequence 1, 3, 4, 2 as 3.25 time unit. Following graph focus on comparison based on average waiting time of algorithms. A time unit on Z-axis and on Y-axis FCFS, SJF, RR and GA algorithms has been presented (Figure 2).VII. CONCLUSION AND FUTURE SCOPEThe problem of scheduling which computer process run at what time on the central processing unit (CPU) or the processor is explored. Some CPU scheduling algorithms has been briefed. The simplicity of the methods used supports the assumption that GA's can provide a highly flexible and user friendly, near optimal solution to the general job sequencing problem. The Genetic algorithms outperform the conventional procedures in solving optimization problems. The new representation has initially been tested on a data to evaluate its effectiveness. Quite promising results are obtained. The simulation results clearly show that the proposed approach is able to find optimized solution. The experiment carried out is efficient to find best sequence. From result we even conclude that with evolutionary technique we may get more than one best sequence with minimum waiting time. This work can be extended so that technique can be implemented for dynamic scheduling and for similar sequencing problem.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
Figure 2: Comparison Graph
After applying Genetic operators' crossover, fitness function and we inversion Get Final population. Out of the above final population we get minimum waiting for job sequence 1, 3, 4, 2 as 3.25 time unit. Following graph focus on comparison based on average waiting time of algorithms. A Z-axis and time on UNIT on Y-axis FCFS, SJF, RR and GA algorithms has been Presented (Figure 2).
VII. SCOPE AND FUTURE conclusion
The Problem of scheduling Process Computer Run at what time on which the Central Processing UNIT (CPU) or the processor is explored. Some CPU scheduling algorithms has been briefed. The simplicity of the methods used supports the assumption that GA's can provide a highly flexible and user friendly, near optimal solution to the general job sequencing problem. The Genetic algorithms outperform the conventional procedures in solving optimization problems. The new representation has initially been tested on a data to evaluate its effectiveness. Quite promising results are obtained. The simulation results clearly show that the proposed approach is able to find optimized solution. The experiment carried out is efficient to find best sequence. From result we even conclude that with evolutionary technique we may get more than one best sequence with minimum waiting time. This work can be extended so that technique can be implemented for dynamic scheduling and for similar sequencing problem.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Figure 2: Comparison Graph
After applying genetic operators', crossover fitness function and inversion we get final, population. Out of the above final population we get minimum waiting for job sequence 1 3 4,,, as 2 3.25 time unit. Following graph. Focus on comparison based on average waiting time of algorithms. A time unit on Z-axis and on Y-axis FCFS SJF,,RR and GA algorithms has been presented (Figure 2).
VII. CONCLUSION AND FUTURE SCOPE
The problem of scheduling which computer. Process run at what time on the central processing unit (CPU) or the processor is explored. Some CPU scheduling algorithms. Has been briefed. The simplicity of the methods used supports the assumption that GA 's can provide a highly flexible and. User, friendlyNear optimal solution to the general job sequencing problem. The Genetic algorithms outperform the conventional procedures. In solving optimization problems. The new representation has initially been tested on a data to evaluate its, effectiveness. Quite promising results are obtained. The simulation results clearly show that the proposed approach is able to find optimized. Solution.The experiment carried out is efficient to find best sequence. From result we even conclude that with evolutionary technique. We may get more than one best sequence with minimum waiting time. This work can be extended so that technique can be implemented. For dynamic scheduling and for similar sequencing problem.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: