Bacterial effects on thirsty plantsDrought stress limits the growth an การแปล - Bacterial effects on thirsty plantsDrought stress limits the growth an อังกฤษ วิธีการพูด

Bacterial effects on thirsty plants

Bacterial effects on thirsty plants
Drought stress limits the growth and productivity of crops, particularly in arid and semi-arid areas [5] . Early studies on IST to drought [6] reported that inoculation with the PGPR Paenibacillus polymyxa enhanced the drought tolerance of Arabidopsis thaliana. RNA differential display on parallel RNA preparations from P. polymyxa-treatedand untreated plants revealed that mRNA transcriptions of a drought-response gene, EARLY RESPONSIVE TODEHYDRATION 15 (ERD15), were also augmented. Another PGPR strain, Achromobacter piechaudii ARV8, which produces 1-aminocyclopropane-1-carboxylate (ACC) deaminase, conferred IST to drought stress in pepper (Capsicum annuum L.) and tomato (Solanum lycopersicumL.) plants [7] . Under stress conditions, including drought, the plant hormone ethylene endogenously regulates plant homeostasis and results in reduced root and shoot growth [8] . However, degradation of the ethylene precursor ACC by bacterial ACC deaminase releases plant stress and rescues normal plant growth [8] . Recent efforts to apply these results to greenhouse and field situations include using mixtures of PGPR strains with symbiotic nitrogen-fixing rhizobia [9] or with mycorrhizal fungi [10] . The rhizobia are sensitive to drought stress, resulting in a significant decrease of N2 fixation when faced with low soil-water content. Under drought stress, co-inoculation of bean (Phaseolus vulgaris L.) with Rhizobium tropici and two strains of P. polymyxa resultedin augmented plant height, shoot dry weight and nodule number [9] . Interestingly, the effect on IST and increased nodule number was greater when a mix of two strains of P.polymyxa was applied than when one strain was applied, suggesting some synergistic effects from the use of strain mixtures. Investigations into how drought stress affects plant hormone balance revealed an increase in abscisic acid (ABA) content in the leaves, indicating that the reduction of endogenous cytokinin levels magnifies ABA content, eliciting stomata closure [9,11] (Figure 1). The cytokinin –ABA antagonism might be the result oftaboli metabolic interactions because they share a common biosynthetic origin [11] . It will be interesting to determine whether cytokinin produced by P. polymyxa affects ABA signaling of plants or rhizobia-elicited nodulation [6,9] .Co-inoculation of lettuce (Lactuca sativa L.) with PGPR pseudomonas mendocina and arbuscular mycorrhizal fungi (Glomus intraradices or G. mosseae) augmented an antioxidant catalase under severe drought conditions, suggesting that they can be used in inoculants to alleviate the oxidative damage elicited by drought [10] (Figure 1).
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Bacterial effects on thirsty plantsDrought stress limits the growth and productivity of crops, particularly in arid and semi-arid areas [5] . Early studies on IST to drought [6] reported that inoculation with the PGPR Paenibacillus polymyxa enhanced the drought tolerance of Arabidopsis thaliana. RNA differential display on parallel RNA preparations from P. polymyxa-treatedand untreated plants revealed that mRNA transcriptions of a drought-response gene, EARLY RESPONSIVE TODEHYDRATION 15 (ERD15), were also augmented. Another PGPR strain, Achromobacter piechaudii ARV8, which produces 1-aminocyclopropane-1-carboxylate (ACC) deaminase, conferred IST to drought stress in pepper (Capsicum annuum L.) and tomato (Solanum lycopersicumL.) plants [7] . Under stress conditions, including drought, the plant hormone ethylene endogenously regulates plant homeostasis and results in reduced root and shoot growth [8] . However, degradation of the ethylene precursor ACC by bacterial ACC deaminase releases plant stress and rescues normal plant growth [8] . Recent efforts to apply these results to greenhouse and field situations include using mixtures of PGPR strains with symbiotic nitrogen-fixing rhizobia [9] or with mycorrhizal fungi [10] . The rhizobia are sensitive to drought stress, resulting in a significant decrease of N2 fixation when faced with low soil-water content. Under drought stress, co-inoculation of bean (Phaseolus vulgaris L.) with Rhizobium tropici and two strains of P. polymyxa resultedin augmented plant height, shoot dry weight and nodule number [9] . Interestingly, the effect on IST and increased nodule number was greater when a mix of two strains of P.polymyxa was applied than when one strain was applied, suggesting some synergistic effects from the use of strain mixtures. Investigations into how drought stress affects plant hormone balance revealed an increase in abscisic acid (ABA) content in the leaves, indicating that the reduction of endogenous cytokinin levels magnifies ABA content, eliciting stomata closure [9,11] (Figure 1). The cytokinin –ABA antagonism might be the result oftaboli metabolic interactions because they share a common biosynthetic origin [11] . It will be interesting to determine whether cytokinin produced by P. polymyxa affects ABA signaling of plants or rhizobia-elicited nodulation [6,9] .Co-inoculation of lettuce (Lactuca sativa L.) with PGPR pseudomonas mendocina and arbuscular mycorrhizal fungi (Glomus intraradices or G. mosseae) augmented an antioxidant catalase under severe drought conditions, suggesting that they can be used in inoculants to alleviate the oxidative damage elicited by drought [10] (Figure 1).
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
Bacterial effects on Thirsty Plants
Drought Stress The growth limits and Productivity of Crops, particularly in arid and semi-arid areas [5]. Early studies on IST to drought [6] reported that inoculation with the PGPR Paenibacillus polymyxa enhanced the drought tolerance of Arabidopsis thaliana. RNA differential display on parallel RNA preparations from P. polymyxa-treatedand untreated plants revealed that mRNA transcriptions of a drought-response gene, EARLY RESPONSIVE TODEHYDRATION 15 (ERD15), were also augmented. Another PGPR strain, Achromobacter piechaudii ARV8, which produces 1-aminocyclopropane-1-carboxylate (ACC) deaminase, conferred IST to drought stress in pepper (Capsicum annuum L.) and tomato (Solanum lycopersicumL.) Plants [7]. Under stress conditions, including drought, the plant hormone ethylene endogenously regulates plant homeostasis and results in reduced root and shoot growth [8]. However, degradation of the ethylene precursor ACC by bacterial ACC deaminase releases plant stress and rescues normal plant growth [8]. Recent efforts to apply these results to greenhouse and field situations include using mixtures of PGPR strains with symbiotic nitrogen-fixing rhizobia [9] or with mycorrhizal fungi [10]. The rhizobia are sensitive to drought stress, resulting in a significant decrease of N2 fixation when faced with low soil-water content. Under drought stress, co-inoculation of bean (Phaseolus vulgaris L.) with Rhizobium tropici and two strains of P. polymyxa resultedin augmented plant height, shoot dry weight and nodule number [9]. Interestingly, the effect on IST and increased nodule number was greater when a mix of two strains of P.polymyxa was applied than when one strain was applied, suggesting some synergistic effects from the use of strain mixtures. Investigations into how drought stress affects plant hormone balance revealed an increase in abscisic acid (ABA) content in the leaves, indicating that the reduction of endogenous cytokinin levels magnifies ABA content, eliciting stomata closure [9,11] (Figure 1). The cytokinin -ABA antagonism might be the result oftaboli metabolic interactions because they share a common biosynthetic origin [11]. It will be interesting to determine whether cytokinin produced by P. polymyxa affects ABA signaling of plants or rhizobia-elicited nodulation [6,9] .Co-inoculation of lettuce (Lactuca sativa L.) with PGPR pseudomonas mendocina and arbuscular mycorrhizal fungi (Glomus. intraradices or G. mosseae) augmented an antioxidant catalase under severe drought conditions, suggesting that they can be used in inoculants to alleviate the oxidative damage elicited by drought [10] (Figure 1).
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Bacterial effects on thirsty plants
Drought stress limits the growth and productivity of crops particularly in, arid and. Semi-arid areas [5]. Early studies on IST to drought [] reported 6 that inoculation with the PGPR Paenibacillus polymyxa. Enhanced the drought tolerance of Arabidopsis thaliana. RNA differential display on parallel RNA preparations from P.Polymyxa-treatedand untreated plants revealed that mRNA transcriptions of a drought-response gene EARLY RESPONSIVE, TODEHYDRATION 15 (ERD15),. Were also augmented. Another, PGPR strain Achromobacter piechaudii ARV8 which produces, 1-aminocyclopropane-1-carboxylate. (ACC), deaminase conferred IST to drought stress in Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicumL.) plants. [7].Under stress, drought conditions including, plant the hormone ethylene endogenously regulates plant homeostasis and results. In reduced root and shoot growth []. However 8, of degradation the ethylene precursor ACC by bacterial ACC deaminase releases. Plant stress and rescues normal plant 8 growth [].Recent efforts to apply these results to greenhouse and field situations include using mixtures of PGPR strains with symbiotic. Nitrogen-fixing rhizobia [] or 9 with mycorrhizal fungi [10]. The rhizobia are sensitive to drought stress resulting in,, A significant decrease of N2 fixation when faced with low soil - water content. Under, drought stress co-inoculation of bean. (Phaseolus vulgaris L.) with Rhizobium tropici and two strains of P. Polymyxa resultedin augmented plant height shoot dry, weight and nodule. Number []. Interestingly the 9, effect on IST and increased nodule number was greater when a mix of two strains of P.polymyxa. Was applied than when one strain was applied suggesting some, synergistic effects from the use of strain mixtures.Investigations into how drought stress affects plant hormone balance revealed an increase in abscisic acid (ABA content.) In the leaves indicating that, the reduction of endogenous cytokinin levels magnifies ABA content eliciting stomata, closure. [] (Figure, 9 11 1).The cytokinin - ABA antagonism might be the result oftaboli metabolic interactions because they share a common biosynthetic. Origin [11]. It will be interesting to determine whether cytokinin produced by P. Polymyxa affects ABA signaling of plants. Or rhizobia-elicited nodulation [,]. Co-inoculation 6 9 of lettuce (Lactuca sativa L.) with PGPR Pseudomonas mendocina and arbuscular mycorrhizal fungi (Glomus intraradices or G. Mosseae) augmented an antioxidant. Catalase under severe, drought conditions suggesting that they can be used in inoculants to alleviate the oxidative damage. Elicited by drought [10] (Figure 1).
.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: