Corollary 2 (Schaal). If for three points A′, B′, C′ the directed angles x =
(A′B, A′C), y = (B′C, B′A) and z = (C′A, C′B) satisfy x+y+z 0 mod ,
then the circumcircles of triangles A′BC, B′CA, C′AB are concurrent at P.
A simple barycentric coordinates formula
Corollary 2 (Schaal). If for three points A′, B′, C′ the directed angles x =(A′B, A′C), y = (B′C, B′A) and z = (C′A, C′B) satisfy x+y+z 0 mod ,then the circumcircles of triangles A′BC, B′CA, C′AB are concurrent at P.A simple barycentric coordinates formula
การแปล กรุณารอสักครู่..
Corollary 2 (Schaal). If for Three points A ', B', C 'directed the Angles x =
(A'B, A'C), Y = (B'C, B'A) and Z = (C'A, C'B). satisfy x + y + z? 0 mod?,
then the circumcircles of triangles A'BC, B'CA, C'AB are concurrent at P.
A Simple Formula barycentric Coordinates.
การแปล กรุณารอสักครู่..
Corollary 2 (Schaal). If for three points A ', B', C 'the directed angles x
(A', 'B A C), y = (B', 'C B A) and z = (C', 'A C B). Satisfy X Y Z 0 mod
then, the circumcircles of triangles A ',', BC B CA C 'AB are concurrent at P.
A simple barycentric. Coordinates formula.
การแปล กรุณารอสักครู่..