ABSTRACTIn this paper some recently developed techniques to evaluate b การแปล - ABSTRACTIn this paper some recently developed techniques to evaluate b อังกฤษ วิธีการพูด

ABSTRACTIn this paper some recently

ABSTRACT
In this paper some recently developed techniques to evaluate both analytically and numerically stability features of a non-smooth
dynamical system, are used to investigate in detail the stability boundaries of regions corresponding to given stable periodic responses.
The problem analyzed is that of a rocking block simply supported on a harmonically moving rigid ground; in this case, if the block is
assumed to be a rigid body, the strong discontinuities characterizing the dynamic evolution are due to the impacts occurring each time
the block crosses the initial equilibrium configuration.
Therefore some special tools, specific for non-smooth functions, must be introduced to perform the stability analysis. In the present
study, the theory due to Müller [19] is used to handle the evaluation of Lyapunov’s exponents upon discontinuities, by introducing the
treatment, both analytical and numerical, of “saltation matrices”. Such a general theoretical method on one hand has been adapted to
the numerical algorithms needed for the solution of the complete, non-linearized, problem and on the other hand, it allowed the
development of the closed-form analytical reference solutions, obtained by linearizing assumptions less restrictive than those used by
Hogan [8, 9].
The approximated stability boundaries obtained by the linearized closed-form solutions have been the starting point to guide the
choice of the system parameters values to locate the responses in regions where bifurcations can arise.
Inside these ranges several examples can be presented to illustrate the trends exhibited by the numerically evaluated Lyapunov’s
exponents when the values of the forcing amplitude increase over the stability boundary of the symmetric responses while the value of
the forcing frequency is fixed.
Among these, investigations on sequences of responses composing period doubling cascades toward chaos, can provide a good and
interesting test to appreciate the indications offered by the numerically derived Lyapunov’s exponents.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
ABSTRACTIn this paper some recently developed techniques to evaluate both analytically and numerically stability features of a non-smoothdynamical system, are used to investigate in detail the stability boundaries of regions corresponding to given stable periodic responses.The problem analyzed is that of a rocking block simply supported on a harmonically moving rigid ground; in this case, if the block isassumed to be a rigid body, the strong discontinuities characterizing the dynamic evolution are due to the impacts occurring each timethe block crosses the initial equilibrium configuration.Therefore some special tools, specific for non-smooth functions, must be introduced to perform the stability analysis. In the presentstudy, the theory due to Müller [19] is used to handle the evaluation of Lyapunov's exponents upon discontinuities, by introducing thetreatment, both analytical and numerical, of "saltation matrices". Such a general theoretical method on one hand has been adapted tothe numerical algorithms needed for the solution of the complete, non-linearized, problem and on the other hand, it allowed thedevelopment of the closed-form analytical reference solutions, obtained by linearizing assumptions less restrictive than those used byHogan [8, 9].The approximated stability boundaries obtained by the linearized closed-form solutions have been the starting point to guide thechoice of the system parameters values to locate the responses in regions where bifurcations can arise.Inside these ranges several examples can be presented to illustrate the trends exhibited by the numerically evaluated Lyapunov'sexponents when the values of the forcing amplitude increase over the stability boundary of the symmetric responses while the value ofthe forcing frequency is fixed.Among these, investigations on sequences of responses composing period doubling cascades toward chaos, can provide a good andinteresting test to appreciate the indications offered by the numerically derived Lyapunov's exponents.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
ABSTRACT
In this Paper Some recently developed Techniques to evaluate both analytically and numerically stability features of a non-Smooth
dynamical System, are used to Investigate in detail the stability boundaries of Regions corresponding to Given Stable periodic Responses.
The Problem analyzed is that of a rocking. block simply supported on a harmonically moving rigid ground; in this Case, if the Block is
assumed to be a rigid Body, the strong discontinuities characterizing the Dynamic Evolution are Due to the impacts occurring each time
the Block crosses the Initial equilibrium Configuration.
Therefore Some special Tools, specific for non-Smooth functions,. must be introduced to perform the stability analysis. In the present
Study, the Theory Due to Müller [19] is used to Handle the evaluation of Lyapunov's exponents upon discontinuities, by introducing the
Treatment, both analytical and Numerical, of "Saltation matrices". Such a general theoretical method on one Hand has been adapted to
the Numerical algorithms needed for the Solution of the Complete, non-linearized, Problem and on the Other Hand, it allowed the
Development of the Closed-form analytical reference Solutions, obtained by Linearizing. assumptions less restrictive than those used by
Hogan [8, 9].
The approximated stability boundaries obtained by the linearized Closed-form Solutions have been the Starting Point to Guide the
Choice of the System Parameters values ​​to Locate the Responses in Regions where bifurcations Can ARISE. .
Inside these Ranges several examples Can be Presented to illustrate the Trends exhibited by the numerically evaluated Lyapunov's
exponents when the values ​​of the forcing amplitude increase over the stability Boundary of the symmetric Responses while the Value of
the forcing frequency is fixed.
Among these, Investigations. Responses on composing sequences of period Doubling Cascades toward Chaos, Can provide a good and
Interesting Test to appreciate the indications offered by the numerically derived Lyapunov's exponents.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
ABSTRACT
In this paper some recently developed techniques to evaluate both analytically and numerically stability features. Of a non-smooth
dynamical system are used, to investigate in detail the stability boundaries of regions corresponding to. Given stable periodic responses.
The problem analyzed is that of a rocking block simply supported on a harmonically moving. Rigid ground; in, this caseIf the block is
assumed to be a, rigid body the strong discontinuities characterizing the dynamic evolution are due to. The impacts occurring each time
the block crosses the initial equilibrium configuration.
Therefore some, special tools specific. For, non-smooth functions must be introduced to perform the stability analysis. In the, present
studyThe theory due to M ü ller [19] is used to handle the evaluation of Lyapunov friendly s exponents upon discontinuities, by introducing EOS The sb treatment the both analytical and numerical the of “ saltation matrices used Such a general theoretical method on one hand has EOS Been adapted to
the numerical algorithms needed for the solution of, the complete non-linearized problem and, on the other. Hand it allowed, the
.Development of the closed-form analytical, reference solutions obtained by linearizing assumptions less restrictive than. Those used by
Hogan [,]. 8 9
The approximated stability boundaries obtained by the linearized closed-form solutions have. Been the starting point to guide the
choice of the system parameters values to locate the responses in regions where bifurcations. Can arise.
.Inside these ranges several examples can be presented to illustrate the trends exhibited by the numerically evaluated Lyapunov s
exponents. ' When the values of the forcing amplitude increase over the stability boundary of the symmetric responses while the value. Of
the forcing frequency is fixed.
Among these investigations on, sequences of responses composing period doubling cascades. Toward, chaos
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: