Deep sea hydrothermal vents are isolated habitats that contain many un การแปล - Deep sea hydrothermal vents are isolated habitats that contain many un อังกฤษ วิธีการพูด

Deep sea hydrothermal vents are iso

Deep sea hydrothermal vents are isolated habitats that contain many unique organisms of the three domains of life; archaea, bacteria and eukarya. Most microbial communities in these habitats have the capability to fix inorganic carbon dioxide. Five CO2 fixation pathways have been documented as important in hydrothermal habitats; the Calvin-Benson cycle, reductive tricarboxylic acid cycle, reductive acetyl-CoA pathway, dicarboxylate/4-hydroxybutyrate cycle and 3-hydroxypropionate/4-hydroxybutyrate cycle. Four different forms of RuBisCO, designated as I, II, III and IV, operate in different microbial communities associated with deep sea hydrothermal vents. The rTCA cycle is found in the Epsilonproteobacteria and Aquificales and the reductive acetyl-CoA pathway in the methanogens microorganisms. It appears that the 3-HP/4-hydroxybutyrate is potentially an important carbon fixation pathway for archaeal communities in deep-sea hydrothermal vent environments. In addition to these pathways for the direct fixation of carbon dioxide, carbonic anhydrase catalyzes the interconversion of CO2 and HCO3−, and facilitates inorganic carbon dioxide uptake, fixation and assimilation. The bicarbonate formed by CA is an essential growth factor for microorganisms and is a metabolic precursor for many other compounds.
Human activities have significantly increased the atmospheric carbon dioxide concentration and this is an important cause of global warming. Therefore, it is of interest to find technologies for carbon dioxide capture. These technologies, combined with other efforts, could help stabilize greenhouse gas concentrations in the atmosphere and mitigate climate change. Biological CO2 fixation has attracted much attention as an alternative strategy. It can be done by plants and by photosynthetic and chemosynthetic microorganisms. These biological technologies could also be attractive for production of biofuels or other industrial products. A variety of technological solutions have been proposed for CO2 sequestration systems. In addition, a number of technologies are currently employed or under development to separate carbon dioxide from mixed byproduct streams of large stationary anthropogenic sources. Therefore, a variety of reactors containing an enzyme such as carbonic anhydrase have been designed to extract CO2 from mixed gas.
In order to develop and improve new technologies, it is important to search and explore enzymes from different sources. The organisms of deep sea hydrothermal vents are well adapted to fix carbon dioxide in an unusual range of temperatures, pressure condition, pH and metal toxicity. So, organisms from the environment could be used for engineering microbes to solve the various technology options for carbon capture and storage.
We thank the anonymous reviewer for thoroughly reading the paper and providing thoughtful comments. We would like to thank Ron Verrall and Ronald Steer for the critical review of this manuscript. This review is dedicated to Lucienne Arbos Bloch, Carlo Cereceda and Jean Laporte.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Deep sea hydrothermal vents are isolated habitats that contain many unique organisms of the three domains of life; archaea, bacteria and eukarya. Most microbial communities in these habitats have the capability to fix inorganic carbon dioxide. Five CO2 fixation pathways have been documented as important in hydrothermal habitats; the Calvin-Benson cycle, reductive tricarboxylic acid cycle, reductive acetyl-CoA pathway, dicarboxylate/4-hydroxybutyrate cycle and 3-hydroxypropionate/4-hydroxybutyrate cycle. Four different forms of RuBisCO, designated as I, II, III and IV, operate in different microbial communities associated with deep sea hydrothermal vents. The rTCA cycle is found in the Epsilonproteobacteria and Aquificales and the reductive acetyl-CoA pathway in the methanogens microorganisms. It appears that the 3-HP/4-hydroxybutyrate is potentially an important carbon fixation pathway for archaeal communities in deep-sea hydrothermal vent environments. In addition to these pathways for the direct fixation of carbon dioxide, carbonic anhydrase catalyzes the interconversion of CO2 and HCO3−, and facilitates inorganic carbon dioxide uptake, fixation and assimilation. The bicarbonate formed by CA is an essential growth factor for microorganisms and is a metabolic precursor for many other compounds.Human activities have significantly increased the atmospheric carbon dioxide concentration and this is an important cause of global warming. Therefore, it is of interest to find technologies for carbon dioxide capture. These technologies, combined with other efforts, could help stabilize greenhouse gas concentrations in the atmosphere and mitigate climate change. Biological CO2 fixation has attracted much attention as an alternative strategy. It can be done by plants and by photosynthetic and chemosynthetic microorganisms. These biological technologies could also be attractive for production of biofuels or other industrial products. A variety of technological solutions have been proposed for CO2 sequestration systems. In addition, a number of technologies are currently employed or under development to separate carbon dioxide from mixed byproduct streams of large stationary anthropogenic sources. Therefore, a variety of reactors containing an enzyme such as carbonic anhydrase have been designed to extract CO2 from mixed gas.In order to develop and improve new technologies, it is important to search and explore enzymes from different sources. The organisms of deep sea hydrothermal vents are well adapted to fix carbon dioxide in an unusual range of temperatures, pressure condition, pH and metal toxicity. So, organisms from the environment could be used for engineering microbes to solve the various technology options for carbon capture and storage.We thank the anonymous reviewer for thoroughly reading the paper and providing thoughtful comments. We would like to thank Ron Verrall and Ronald Steer for the critical review of this manuscript. This review is dedicated to Lucienne Arbos Bloch, Carlo Cereceda and Jean Laporte.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
Deep sea hydrothermal vents are isolated habitats that contain many unique organisms of the three domains of life; archaea, bacteria and eukarya. Most microbial communities in these habitats have the capability to fix inorganic carbon dioxide. Five CO2 fixation pathways have been documented as important in hydrothermal habitats; the Calvin-Benson cycle, reductive tricarboxylic acid cycle, reductive acetyl-CoA pathway, dicarboxylate / 4-hydroxybutyrate cycle and 3-hydroxypropionate / 4-hydroxybutyrate cycle. Four different forms of RuBisCO, designated as I, II, III and IV, operate in different microbial communities associated with deep sea hydrothermal vents. The rTCA cycle is found in the Epsilonproteobacteria and Aquificales and the reductive acetyl-CoA pathway in the methanogens microorganisms. It appears that the 3-HP / 4-hydroxybutyrate is potentially an important carbon fixation pathway for archaeal communities in deep-sea hydrothermal vent environments. In addition to these pathways for the direct fixation of carbon dioxide, carbonic anhydrase catalyzes the interconversion of CO2 and HCO3-, and facilitates inorganic carbon dioxide uptake, fixation and assimilation. CA is an Essential bicarbonate formed by the growth factor for microorganisms and is a precursor for many metabolic Other compounds.
Human activities have significantly Increased Atmospheric carbon dioxide concentration and the this is an important Cause of Global warming. Therefore, it is of interest to find technologies for carbon dioxide capture. These technologies, combined with other efforts, could help stabilize greenhouse gas concentrations in the atmosphere and mitigate climate change. Biological CO2 fixation has attracted much attention as an alternative strategy. It can be done by plants and by photosynthetic and chemosynthetic microorganisms. These biological technologies could also be attractive for production of biofuels or other industrial products. A variety of technological solutions have been proposed for CO2 sequestration systems. In addition, a number of technologies are currently employed or under development to separate carbon dioxide from mixed byproduct streams of large stationary anthropogenic sources. Therefore, a Variety of carbonic anhydrase reactors containing an enzyme such as CO2 have been designed to Extract from mixed gas.
In Order to develop and improve New Technologies, it is important to search and explore enzymes from different sources. The organisms of deep sea hydrothermal vents are well adapted to fix carbon dioxide in an unusual range of temperatures, pressure condition, pH and metal toxicity. So, the Environment could be used for organisms from microbes to Solve the Engineering Technology Various options for carbon Capture and Storage.
We Thank the anonymous Reviewer for thoroughly reading the Paper and providing thoughtful comments. We would like to thank Ron Verrall and Ronald Steer for the critical review of this manuscript. This review is dedicated to Lucienne Arbos Bloch, Carlo Cereceda and Jean Laporte.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Deep sea hydrothermal vents are isolated habitats that contain many unique organisms of the three domains of life; archaea,, Bacteria and eukarya. Most microbial communities in these habitats have the capability to fix inorganic carbon, dioxide. Five CO2 fixation pathways have been documented as important in hydrothermal habitats; the, Calvin-Benson cycle reductive. Tricarboxylic, acid cycleReductive, acetyl-CoA pathway dicarboxylate / 4-hydroxybutyrate cycle and 3-hydroxypropionate / 4-hydroxybutyrate cycle. Four. Different forms of RuBisCO designated as, I II III and IV,,, in operate different microbial communities associated with. Deep sea hydrothermal vents.The rTCA cycle is found in the Epsilonproteobacteria and Aquificales and the reductive acetyl-CoA pathway in the methanogens. Microorganisms. It appears that the 3-HP / 4-hydroxybutyrate is potentially an important carbon fixation pathway for archaeal. Communities in deep-sea hydrothermal vent environments. In addition to these pathways for the direct fixation of carbon. Dioxide.Carbonic anhydrase catalyzes the interconversion of CO2 and HCO3 − and facilitates, inorganic carbon, dioxide uptake fixation. And assimilation. The bicarbonate formed by CA is an essential growth factor for microorganisms and is a metabolic precursor. For many other compounds.
.Human activities have significantly increased the atmospheric carbon dioxide concentration and this is an important cause. Of global warming. Therefore it is, of interest to find technologies for carbon dioxide capture. These technologies combined,, With, other efforts could help stabilize greenhouse gas concentrations in the atmosphere and mitigate climate change.Biological CO2 fixation has attracted much attention as an alternative strategy. It can be done by plants and by photosynthetic. And chemosynthetic microorganisms. These biological technologies could also be attractive for production of biofuels or. Other industrial products. A variety of technological solutions have been proposed for CO2 sequestration systems, In addition.A number of technologies are currently employed or under development to separate carbon dioxide from mixed byproduct streams. Of large stationary anthropogenic sources. Therefore a variety, of reactors containing an enzyme such as carbonic anhydrase. Have been designed to extract CO2 from mixed gas.
In order to develop and improve, new technologiesIt is important to search and explore enzymes from different sources. The organisms of deep sea hydrothermal vents are. Well adapted to fix carbon dioxide in an unusual range of, condition temperatures pressure, and pH metal toxicity. So organisms,, From the environment could be used for engineering microbes to solve the various technology options for carbon capture and. Storage.
.We thank the anonymous reviewer for thoroughly reading the paper and providing thoughtful comments. We would like to thank. Ron Verrall and Ronald Steer for the critical review of this manuscript. This review is dedicated to Lucienne, Arbos Bloch. Carlo Cereceda and Jean Laporte.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: