The future of atomic absorption spectrometry: a continuum source with  การแปล - The future of atomic absorption spectrometry: a continuum source with  อังกฤษ วิธีการพูด

The future of atomic absorption spe

The future of atomic absorption spectrometry: a continuum source with
a charge coupled array detector†

Plenary Lecture

James M. Harnly

US Department of Agriculture, Agriculture Research Service, Beltsville Human Nutrition Research
Center, Food Composition Laboratory, Building 161, BARC-East, Beltsville, MD 20705, USA

Received 29th September 1998, Accepted 17th November 1998

Continuum source atomic absorption spectrometry (CS-AAS) has made impressive progress in the last 5 years
thanks to the availability of high resolution echelle spectrometers and solid state array detectors. With these new
´
spectrometers and detectors, the capabilities of CS-AAS exceed those of conventional, line source-AAS (LS-AAS).
For CS-AAS, absorbances are more accurate (corrected for stray radiation and non-specific broadband background
absorption and integrated with respect to height in the furnace), detection limits average a factor of 2 lower,
calibration ranges are a factor of 1000 greater, multi-wavelength data are available for correction of spectral
interferences, sensitivity is a powerful quality assurance measure since it is independent of all instrument parameters
except atomization temperature and, of course, multi-element detection is possible. The future appears bright for
CS-AAS. Whereas, previously, CS-AAS was striving for parity with LS-AAS, it is now reasonable to state that it is
CS-AAS which is setting the standard.

Introduction Substitution of a continuum source for HCLs, without
changing the rest of the instrument, is not a reasonable
Continuum source atomic absorption spectrometry (CS-AAS) approach. The instability of the most intense continuum
has long appealed to the spectroscopic community because of sources, xenon arc lamps, gives noisy baselines and poor
the potential for simultaneous multi-element AAS determi- detection limits. Medium resolution monochromators, that are
nations, a shortcoming of conventional line source AAS ideal for isolating HCL emission lines, provide a spectral
(LS-AAS). Unfortunately, owing to limitations of the source, bandwidth that is too large for use with a continuum source.
CS-AAS has failed for many years to compete with LS-AAS The large spectral bandwidth results in poor sensitivity and
with respect to detection limits. Today, with the high radiation specificity, non-linear calibration curves and greater suscepti-
throughput and spectral resolution of echelle spectrometers,
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
The future of atomic absorption spectrometry: a continuum source with a charge coupled array detector† Plenary Lecture James M. Harnly US Department of Agriculture, Agriculture Research Service, Beltsville Human Nutrition Research Center, Food Composition Laboratory, Building 161, BARC-East, Beltsville, MD 20705, USA Received 29th September 1998, Accepted 17th November 1998 Continuum source atomic absorption spectrometry (CS-AAS) has made impressive progress in the last 5 years thanks to the availability of high resolution echelle spectrometers and solid state array detectors. With these new ´ spectrometers and detectors, the capabilities of CS-AAS exceed those of conventional, line source-AAS (LS-AAS). For CS-AAS, absorbances are more accurate (corrected for stray radiation and non-specific broadband background absorption and integrated with respect to height in the furnace), detection limits average a factor of 2 lower, calibration ranges are a factor of 1000 greater, multi-wavelength data are available for correction of spectral interferences, sensitivity is a powerful quality assurance measure since it is independent of all instrument parameters except atomization temperature and, of course, multi-element detection is possible. The future appears bright for CS-AAS. Whereas, previously, CS-AAS was striving for parity with LS-AAS, it is now reasonable to state that it is CS-AAS which is setting the standard. Introduction Substitution of a continuum source for HCLs, without changing the rest of the instrument, is not a reasonable Continuum source atomic absorption spectrometry (CS-AAS) approach. The instability of the most intense continuum has long appealed to the spectroscopic community because of sources, xenon arc lamps, gives noisy baselines and poor the potential for simultaneous multi-element AAS determi- detection limits. Medium resolution monochromators, that are nations, a shortcoming of conventional line source AAS ideal for isolating HCL emission lines, provide a spectral (LS-AAS). Unfortunately, owing to limitations of the source, bandwidth that is too large for use with a continuum source. CS-AAS has failed for many years to compete with LS-AAS The large spectral bandwidth results in poor sensitivity and with respect to detection limits. Today, with the high radiation specificity, non-linear calibration curves and greater suscepti- throughput and spectral resolution of echelle spectrometers,
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
The future of atomic absorption spectrometry: a continuum source with
a charge coupled array detector†

Plenary Lecture

James M. Harnly

US Department of Agriculture, Agriculture Research Service, Beltsville Human Nutrition Research
Center, Food Composition Laboratory, Building 161, BARC-East, Beltsville, MD 20705, USA

Received 29th September 1998, Accepted 17th November 1998

Continuum source atomic absorption spectrometry (CS-AAS) has made impressive progress in the last 5 years
thanks to the availability of high resolution echelle spectrometers and solid state array detectors. With these new
´
spectrometers and detectors, the capabilities of CS-AAS exceed those of conventional, line source-AAS (LS-AAS).
For CS-AAS, absorbances are more accurate (corrected for stray radiation and non-specific broadband background
absorption and integrated with respect to height in the furnace), detection limits average a factor of 2 lower,
calibration ranges are a factor of 1000 greater, multi-wavelength data are available for correction of spectral
interferences, sensitivity is a powerful quality assurance measure since it is independent of all instrument parameters
except atomization temperature and, of course, multi-element detection is possible. The future appears bright for
CS-AAS. Whereas, previously, CS-AAS was striving for parity with LS-AAS, it is now reasonable to state that it is
CS-AAS which is setting the standard.

Introduction Substitution of a continuum source for HCLs, without
changing the rest of the instrument, is not a reasonable
Continuum source atomic absorption spectrometry (CS-AAS) approach. The instability of the most intense continuum
has long appealed to the spectroscopic community because of sources, xenon arc lamps, gives noisy baselines and poor
the potential for simultaneous multi-element AAS determi- detection limits. Medium resolution monochromators, that are
nations, a shortcoming of conventional line source AAS ideal for isolating HCL emission lines, provide a spectral
(LS-AAS). Unfortunately, owing to limitations of the source, bandwidth that is too large for use with a continuum source.
CS-AAS has failed for many years to compete with LS-AAS The large spectral bandwidth results in poor sensitivity and
with respect to detection limits. Today, with the high radiation specificity, non-linear calibration curves and greater suscepti-
throughput and spectral resolution of echelle spectrometers,
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
The future of atomic absorption spectrometry: a continuum source with
a charge coupled array detector video

Plenary Lecture.

James M. Harnly

US Department of Agriculture Agriculture Research, Service Beltsville Human, Nutrition Research
Center,, Food Composition Laboratory Building 161 BARC-East,,,,, Beltsville MD 20705 USA

Received 29th, September 1998 Accepted. 17th November 1998

.Continuum source atomic absorption spectrometry (CS-AAS) has made impressive progress in the last 5 years
Thanks to the. Availability of high resolution echelle spectrometers and solid state array detectors. With these new

spectrometers pixel. And detectors the capabilities, of CS-AAS exceed those, of conventional line source - AAS (LS-AAS).
For, CS-AASAbsorbances are more accurate (corrected for stray radiation and non-speci fi C broadband background
absorption and integrated. With respect to height in the furnace), detection limits average a factor of 2 lower
calibration, ranges are a factor of, 1000 greater. Multi-wavelength data are available for correction of, spectral
interferencesSensitivity is a powerful quality assurance measure since it is independent of all instrument parameters
except atomization. And temperature, course of, detection multi-element is possible. The future appears bright for
CS-AAS. Whereas previously,,, CS-AAS was striving for parity with LS-AAS it is, now reasonable to state that it is
CS-AAS which is setting the, standard.

.Introduction Substitution of a continuum source, for HCLs without
changing the rest of the instrument is not, a reasonable.
Continuum source atomic absorption spectrometry (CS-AAS) approach. The instability of the most intense continuum
has long. Appealed to the spectroscopic community because of sources xenon arc, lamps gives noisy, baselines and poor
.The potential for simultaneous multi-element AAS determi - detection limits. Medium resolution monochromators that are,,
nations a shortcoming, of conventional line source AAS ideal for isolating HCL emission lines provide a, spectral
(LS-AAS).? Unfortunately owing to, limitations of, the source bandwidth that is too large for use with a continuum source.
.CS-AAS has failed for many years to compete with LS-AAS The large spectral bandwidth results in poor sensitivity and
with. Respect to detection limits. Today with the, high radiation speci fi City non-linear calibration, curves and greater suscepti -.
throughput and spectral resolution of, echelle spectrometers
.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: