where:Qmi,j = material flow i, which undergoes the treatmentmethod j,  การแปล - where:Qmi,j = material flow i, which undergoes the treatmentmethod j,  อังกฤษ วิธีการพูด

where:Qmi,j = material flow i, whic

where:
Qmi,j = material flow i, which undergoes the treatment
method j, tonne waste material/year
EFi,j = emission factor (kgCO2e/tonne waste material) of
each material i, in each treatment j.
The data for material flows were taken from Eurostat
database (2015), while the emission factors were considered
from authors who have suggested CF aggregated models:
Smith et al. (2001), EPA (2006), Chen and Lin (2008),
Christensen et al. (2009). These emission factors are
developed considering national average conditions in USA
and EU, respectively. The values obtained for each of the
suggested models may vary substantially, due to different
methodologies used, definition of waste categories, different
greenhouse gases (GHG) accounting. There are cases in which
EF value may be positive or negative. The model proposed by
Christensen et al. (2009) provides a range of minimum and
maximum values for the EF. Based on these observations, the
study compares the values of different waste streams and
timeline within the same model and in between models.
In this study, 6 main types of waste could be considered for
the Romanian case study namely: organic or biodegradable
waste, metals (ferrous and non-ferrous), glass, paper and
cardboard, plastic, and wood wastes. The data on waste
generation per these specific waste categories and treatment
options were available only for 2010 and 2012. Due to data
constraints, the use of CF aggregated models is preferred,
because they represent an efficient solution to obtain
information on the environmental impact, especially on the
air emission issues, as compared to other methodologies.
Thus, it was possible to calculate the Carbon footprint
of the 6 solid waste streams. To our best knowledge, this is
the first study that estimates carbon footprint based on this
methodology, for all 6 waste categories and mentioned years,
for Romania.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
where:Qmi,j = material flow i, which undergoes the treatmentmethod j, tonne waste material/yearEFi,j = emission factor (kgCO2e/tonne waste material) ofeach material i, in each treatment j.The data for material flows were taken from Eurostatdatabase (2015), while the emission factors were consideredfrom authors who have suggested CF aggregated models:Smith et al. (2001), EPA (2006), Chen and Lin (2008),Christensen et al. (2009). These emission factors aredeveloped considering national average conditions in USAand EU, respectively. The values obtained for each of thesuggested models may vary substantially, due to differentmethodologies used, definition of waste categories, differentgreenhouse gases (GHG) accounting. There are cases in whichEF value may be positive or negative. The model proposed byChristensen et al. (2009) provides a range of minimum andmaximum values for the EF. Based on these observations, thestudy compares the values of different waste streams andtimeline within the same model and in between models.In this study, 6 main types of waste could be considered forthe Romanian case study namely: organic or biodegradablewaste, metals (ferrous and non-ferrous), glass, paper andcardboard, plastic, and wood wastes. The data on wastegeneration per these specific waste categories and treatmentoptions were available only for 2010 and 2012. Due to dataconstraints, the use of CF aggregated models is preferred,because they represent an efficient solution to obtaininformation on the environmental impact, especially on theair emission issues, as compared to other methodologies.Thus, it was possible to calculate the Carbon footprintof the 6 solid waste streams. To our best knowledge, this isthe first study that estimates carbon footprint based on thismethodology, for all 6 waste categories and mentioned years,for Romania.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
where:
qmi, J = Material flow I, which undergoes the Treatment
method J, TONNE waste Material / year
efi, J = emission factor (KgCO2e / TONNE waste Material) of
each Material I, in each Treatment J.
The Data for Material flows. were taken from Eurostat
Database (2015), while the emission factors were considered
from Authors Who have SUGGESTED CF aggregated models:
Smith et al. (The 2,001th), EPA (the 2,006th), Chen and Lin (in 2008),
Christensen et al. (2009). These emission factors are
developed considering National average conditions in USA
and EU, respectively. The values ​​obtained for each of the
models SUGGESTED May Vary substantially, Due to different
methodologies used, Definition of waste categories, different
greenhouse Gases (GHG) accounting. Cases in which there are
positive or negative EF VALUE May be. The Model Proposed by
Christensen et al. (The 2009th) provides a Range of minimum and
maximum values ​​for the EF. Based on these observations, the
Study compares the values ​​of different waste Streams and
Timeline Within the Same Model and in between models.
In this Study, 6 Main types of waste could be considered for
the Romanian Case Study namely: Organic or biodegradable
waste, Metals. (ferrous and non-ferrous), Glass, Paper and
cardboard, Plastic, Wood and wastes. Data on the waste
Generation per these specific waste categories and Treatment
options were available for only two thousand and ten and 2012. Data Due to
constraints, the use of CF Preferred is aggregated models,
because they represent an efficient Solution to obtain
information on the Environmental Impact, especially. on the
Air emission issues, as compared to Other methodologies.
Thus, it was possible to Calculate the Carbon footprint
of the 6 Solid waste Streams. Knowledge to our best, this is
the First Carbon footprint Study estimates that based on this
methodology, for all waste categories and mentioned 6 years,
for Romania.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Where:Qmi J = material, flow I which undergoes, the treatment.Method J tonne waste, material / year.EFi J = emission, factor (kgCO2e / tonne waste material of.)Each, material I in each treatment J.The data for material flows were taken from Eurostat.Database (2015), while the emission factors were considered.From authors who have suggested CF aggregated models:Smith et al. (2001), EPA (2006), Chen and Lin (2008),Christensen et al. (2009). These emission factors are.Developed considering national average conditions in USA.And, EU respectively. The values obtained for each of the.Suggested models may vary substantially due to, different.Methodologies used definition of waste categories different,,,Greenhouse gases (GHG) accounting. There are cases in which.EF value may be positive or negative. The model proposed by.Christensen et al. (2009) provides a range of minimum and.Maximum values for the EF. Based on, these observations the.Study compares the values of different waste streams and.Timeline within the same model and in between models.In this study 6 main, types of waste could be considered for.The Romanian case study namely: organic or biodegradable.Waste metals (ferrous, and non-ferrous), glass paper and,,,, cardboard plastic and wood wastes. The data on waste.Generation per these specific waste categories and treatment.Options were available only for 2010 and 2012. Due to data.Constraints the use, of CF aggregated models, is preferredBecause they represent an efficient solution to obtain.Information on the environmental impact especially on, the.Air emission issues as compared, to other methodologies.Thus it was, possible to calculate the Carbon footprint.Of the 6 solid waste streams. To our best knowledge this is,,The first study that estimates carbon footprint based on this.Methodology for all, 6 waste categories and, mentioned yearsFor Romania.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: